Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37892167

RESUMO

In this study, we synthesized benzodioxol carboxamide derivatives and investigated their antidiabetic potential. The synthesized compounds (Ia-Ic and IIa-IId) underwent characterization via HRMS, 1H-, 13CAPT-NMR, and MicroED. Their efficacy against α-amylase was assessed in vitro, while MTS assays were employed to gauge cytotoxicity across cancer and normal cell lines. Additionally, the antidiabetic impact of compound IIc was evaluated in vivo using a streptozotocin-induced diabetic mice model. Notably, IIa and IIc displayed potent α-amylase inhibition (IC50 values of 0.85 and 0.68 µM, respectively) while exhibiting a negligible effect on the Hek293t normal cell line (IC50 > 150 µM), suggesting their safety. Compound IId demonstrated significant activity against four cancer cell lines (26-65 µM). In vivo experiments revealed that five doses of IIc substantially reduced mice blood glucose levels from 252.2 mg/dL to 173.8 mg/dL in contrast to the control group. The compelling in vitro anticancer efficacy of IIc and its safety for normal cells underscores the need for further in vivo assessment of this promising compound. This research highlights the potential of benzodioxol derivatives as candidates for the future development of synthetic antidiabetic drugs.


Assuntos
Diabetes Mellitus Experimental , Neoplasias , Camundongos , Animais , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Diabetes Mellitus Experimental/tratamento farmacológico , Células HEK293 , Estreptozocina , alfa-Amilases
2.
J Org Chem ; 84(11): 6982-6991, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31066559

RESUMO

Polyhydroxylated compounds are building blocks for the synthesis of carbohydrates and other natural products. Their synthesis is mainly achieved by different synthetic versions of aldol-coupling reactions, catalyzed either by organocatalysts, enzymes, or metal-organic catalysts. We have investigated the formation of 1,4-substituted 2,3-dihydroxybutan-1-one derivatives from para- and meta-substituted phenylacetaldehydes by three distinctly different strategies. The first involved a direct aldol reaction with hydroxyacetone, dihydroxyacetone, or 2-hydroxyacetophenone, catalyzed by the cinchona derivative cinchonine. The second was reductive cross-coupling with methyl- or phenylglyoxal promoted by SmI2, resulting in either 5-substituted 3,4-dihydroxypentan-2-ones or 1,4 bis-phenyl-substituted butanones, respectively. Finally, in the third case, aldolase catalysis was employed for synthesis of the corresponding 1,3,4-trihydroxylated pentan-2-one derivatives. The organocatalytic route with cinchonine generated distereomerically enriched syn-products (de = 60-99%), with moderate enantiomeric excesses (ee = 43-56%) but did not produce aldols with either hydroxyacetone or dihydroxyacetone as donor ketones. The SmI2-promoted reductive cross-coupling generated product mixtures with diastereomeric and enantiomeric ratios close to unity. This route allowed for the production of both 1-methyl- and 1-phenyl-substituted 2,3-dihydroxybutanones at yields between 40-60%. Finally, the biocatalytic approach resulted in enantiopure syn-(3 R,4 S) 1,3,4-trihydroxypentan-2-ones.


Assuntos
Butanonas/síntese química , Butanonas/metabolismo , Cinchona/química , Frutose-Bifosfato Aldolase/metabolismo , Pentanonas/síntese química , Pentanonas/metabolismo , Butanonas/química , Catálise , Estrutura Molecular , Pentanonas/química , Estereoisomerismo
3.
Biochemistry ; 57(40): 5877-5885, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30204427

RESUMO

d-Fructose 6-phosphate aldolase (FSA) catalyzes the asymmetric cross-aldol addition of phenylacetaldehyde and hydroxyacetone. We conducted structure-guided saturation mutagenesis of noncatalytic active-site residues to produce new FSA variants, with the goal of widening the substrate scope of the wild-type enzyme toward a range of para- and meta-substituted arylated aldehydes. After a single generation of mutagenesis and selection, enzymes with diverse substrate selectivity scopes were identified. The kinetic parameters and stereoselectivities for a subset of enzyme/substrate combinations were determined for the reactions in both the aldol addition and cleavage reaction directions. The achieved collection of new aldolase enzymes provides new tools for controlled asymmetric synthesis of substituted aldols.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Frutose-Bifosfato Aldolase/química , Frutosefosfatos/química , Proteínas de Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutosefosfatos/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...